
ANISOTROPY OF STRENGTH IN SINGLE CRYSTALS UNDER 
PLANE STRAIN COMPRESSION* 
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The strength of a crystal undergoing deformation depends on the crystal orientation and the geometry 
of deformation. In this paper, the Bishop and Hill analysis (Phil. Mag. 42, pp. 414-427 and pp. 1298-
1307 (1957» is utilized to calculate the stress requirements for f.c.c. crystals of several orientations 
undergoing plane strain deformation. The latter is frequently found in plastic working operations such 
as rolling, deep drawing, and wire flattening. Compression tests were conducted on Permalloy (4% 
Mo-17 % Fe-79 % Ni) single crystals and on polycrystalline material with the samples confined to a channel 
to prevent lateral spreading. Strength differences by a factor of two may be obtained this way. The 
present findings are in good agreement with analys is, a lthough some results are complicated by deforma­
tion banding and lattice rotations. 

Al'HSOTROPIE DE RESISTANCE DE MONOCRISTAUX SOUMIS A UNE COMPRESSION 
EN ETAT PLAN DE DEFORMATION 

La resistance d'un cristal soumis a une deformation depend de l'orientation de ce cristal et de la 
geometrie de la deformation. Dans cet article, les auteurs utilisent I'analyse de Bishop et Hill (Phil. 
Mag. 42, pp. 414-427 et pp. 1298-1307 (1957» pour calculer les conditions de contraintes relatives a des 
cristaux c.f.c. de differentes orientations soumis a une deformation en etat plan de deformation. Ce type 
de deformation se rencontre en effet dans de nombreuses operations de deformation plastique, telles que Ie 
laminage et I'emboutissage. Les essais de compression ont ete executes sur des monocristaux de Permalloy 
(4 %Mo-17 %Fe-79 %Ni); ainsi que sur des echantillons polycristallins, les eprouvettes etant soll icitees a 
l'aide d'un equipement destine a empecher toute expansion laterale. On peut obtenir de cette maniere des 
differences de resistance variant du simple au double. Les resultats des essais sont en bon accord avec 
l'analyse theorique, bien que certains resultats se compliquent par l'apparition de bandes de deformation 
et par la rotation du reseau. 

DIE Al~ISOTHOPIE DER FESTIGKEIT VON EINKRISTALLEN BEl KOMPRESSION MIT 
EBENER VERZERRUNG 

Die Festigkeit eines plastisch verformten Kristalles hiingt von der Kristallorientierung und von del' 
Verformungsgeometrie abo In dieser Arbeit wird mit Hilfe der Analyse von Bishop und Hill (Phil. ~Mag . 
42, S. 414-427 und S. 1298-1307 (1957» die erforderliche Spannung fiiI" die Verformung mit ebener 
Verzerrung VOIl k.f.z. Kristallen verschiedener Orientierung berechnet. Diese Verformungsart liegt 
haufig vor beim Walzen, Ziehen und Drahtabflachen. Kompressionsversuche wurden an Permalloy 
(4%Mo- 17%Fe-79%Ni) Einkristallen durchgefuhrt, sowie an polykristallinem Material, wobei die 
Probe zur Vermeidung einer seitlichen Ausbreitung in einen Kanal gebettet wurde. Auf cliese Weise kann 
man Festigkeitsunterschiede bis zu einem Faktor 2 erzielen. Die Ergebnisse sind in guter Uberein­
stimmung mit del' Analyse, obwohl einige Beobachtungen verwickelter werden durch Bandbildung bei 
del' Ver[ormung und dmch Gitterdrehlmgen. 

Since plastic deformation is generally accomplished 
by a slip or twinning process, the stresses required to 
deform a crystal will vary with crystal orientation and 
geometry of deformation. The exploitation of crystal­
lographic texture in strengthening materials-"texture 
hardening"(I)-has been the subject of several recent 
investigations. (1-3) Of particular interest is the work 
of Hosford and Backofen, (3) who applied the Bishop 
and Hill analysis of slip(4) in calculating the yield 
strength of textured sheets. The latter method is a 
simplication of the earlier Taylor(5) analysis and places 
it on a theoretically sounder basis. 

To date the only direct investigation of the basic 
theory using single crystals has been the work of 
Hosford, (6) who imposed axial symmetric flow in alu­
minum crystals by wire drawing. He found a reason-
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able correlation of the drawing stress with axial 
orientation as predicted by theory. It appears that 
additional experiments based on other types of imposed 
flow are desirable as a further test to the theory. Ac­
cordingly, the Bishop and Hill analysis is applied to 
calculating the compression strength of crystals under­
going plane strain deformation. This type of deforma­
tion occurs frequently in plastic working operations 
such as rolling, deep drawing, and roll-flattening and 
flat-drawing of fine wires. The latter two processes are 
important in the manufacture of magnetic tapes for 
memory device applications. In the present experi­
ment, the analytical results were tested with single 
crystals of Permalloy (4 % Mo---I7 % Fe-79 % Ni) in a 
specially designed compression apparatus. The results 
are in general agreement with theory. It is observed 
that for a given thickness reduction, the strength can 
vary by a factor of two even in these f.c .c. crystals. 

A similar study has been made recently by Hosford (7) 
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on aluminum crystals. He used an indentation method 
of approximating plane strain. Good agreement be­
tween theory and experiment was likewise obtained. 

THE B ISHO P AND HILL ANALYSIS 

The amount of plastic work per unit volume done by 
a tensile (or compressive) stress (1""" in the x-direction is 

(1) 

where de""" is the incremental strain in the x-direction. 
This external work may be equated with that due to 
shear in the active slip systems, 

(2) 

where 'T is the shear stress for slip and is assumed to be 
equal for all slip systems, and dy i is the incremental 
shear for the ith slip system. Equating (1) and (2) 
yields 

(3) 

As pointed out by Hosford, (3) M is a generalized 
Schmid factor relating the applied stress for flow to the 
basic shear stress for slip. It is purely dependent on 
orientation and on the imposed shape change. Thus, 
once the latter is fixed (such as plane strain), the value 
M will vary with orientation alone. 

To obtain the appropriate value of M, Bishop and 
Hill applied the principle of maximum work.* In this 
method it is noted that an arbitrary strain generally 
requires five or more independent active slip systems. 
Since the shear stress for. slip is assumed equal for all 
slip systems, only a limited number of stress states is 
capable of activating the same shear stress on the five 
or more slip systems. This number is twenty-eight for 
cubic metals which slip on {Ill }(IlO) slip systems. 
According to the principle of maximum work, the 
appropriate stress state(s) is one in which the work dw 
of equation (3) is a maximum. 

The twenty-eight stress states are reproduced in 
Table 1. Since these states consists of simple com­
binations of only six stress terms. 

A = (122 - (133 ' B = (133 - (1n' C = (1u - (122' 

,F = (123' G = (131 ' H = (112' 

* Equation (3) may be rewritten as 

1 dw dw 
7' = M de"", = :Edy, . 

For slip to occur, the shear stress 7' must be raised to the 
critical value for slip. This may be done either by minimizing 
the amount of crystallographic shear :Edr, (Taylor's minimum 
shear principle), or by maximizing the amount of plastic work 
dw (Bishop and Hill's maximum work principle) . Both 
methods give equivalent results, although the latter is generally 
simpler to apply. 

TABLE 1. The 28 stress states of Bishop and Hill· 

No. A B 0 F G H 

1 1 -1 0 0 0 0 
2 0 1 - 1 0 0 0 
3 -1 0 1 0 0 0 
4 0 0 0 1 0 0 
5 0 0 0 0 1 0 
6 0 0 0 0 0 1 
7 t - 1 t 0 t 0 
8 t - 1 t 0 -t 0 
9 - 1 t t t 0 0 

10 - 1 t t -t 0 0 
11 t t - 1 0 0 t 
12 t t - 1 0 0 -t 
13 t 0 -t t 0 t 
14 t 0 -t -t 0 t 
15 t 0 -i- t 0 -t 
16 t 0 -t -t 0 -t 
17 0 -t t 0 t t 
18 0 -t t 0 -t t 
19 0 -t t 0 t -t 
20 0 -t t 0 -t -t 
21 -t t 0 t t 0 
22 -t t 0 -t t 0 
23 -t t 0 t -t 0 
24 -t t 0 -t -t 0 
25 0 0 0 t t -t 
26 0 0 0 t -t t 
27 0 0 0 -t t t 
28 0 0 0 t t t 
* From J . F. W. BISHOP, Phi l. Mag . 44, pp. 51-64 (1953). 

when referred to cubic axes, the work dw is conveni­
ently expanded as a sum of products of stress and 
strain with respect to these axes. Thus 

dw = (1uden + (122de22 + (133de33 + 2(123de23 

+ 2(131de31 + 2(112de21 

= ((1n - (133)dell + ((122 - (133)de22 + 2(123de23 

+ 2(131de31 + 2(112de12' (4) 

by noting that deu + de22 + de33 = O. Substitution 
of A, B , etc. into (4) and then inserting into (3) yield 

1 
M = -d [-Bden + Ade22 + 2Fde23 + 2Gde31 

'T e""" + 2Hded. (5) 

For the case of plane strain compression under 
study, let x be the compression axis and z the elonga­
tion direction, we have 

de1ly = 0, dezz= - de""", deyZ = de • ., = de.,,, = O. t 
(6) 

t Strictly speaking, plane strain does not require that dezz 
be zero. The latter is usually the case in rolling a polycrys­
talline sample and is thus a useful simplification in extending 
the analysis beyond single crystals. It will be seen later that 
the present test setup does not restriot de •• and de•z to zero, 
although the symmetry of the operating slip systems in most 
orientations under study automatically leads to such a zero 
value. 

• 
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111 

FLO. 1. Stundard (112) stereographic projection for a 
cubic crystal. 

Given a crystal orientation, the strain components 
along the cubic axes (dcll' etc.) can be found in terms of 
dc.,., by using equation (6) and the proper matrix for 
transforming coordinate axes. The appropriate com­
bination(s) of A, B , etc. can be then be found from 
among the 28 stress states to maximize the right side 
of equation (5). 

APPLICATION TO F.C.C. METALS 

Equation (5) will now be applied to crystals of 
several highly symmetrical orientations. Because of 
their symmetry, these orientations are of interest in 
connection with texture formation and magnetic 
anisotropy(S) as well as strength considerations. As 
usual, {1l1}(110) slip is assumed. 

1. Compression plane (112); elongation direction 
[ITI]. 

Let the specimen coordinate axes be x-[1l2], 
y - [110] , and z- [ITl] , Fig.!. The matrix of trans­
formation to the cubic axes (1- [100] , 2- [010] , 3-
[001]) is 

x y z 

111 
1 ----­

V6 V2 V3 
1 

2 V6 
2 

3 V6 

1 1 

V2 - V3 
1 

o 
V3 

Hence, from equation (6) and the transformation 
matrix, we find that 

dCll = - dc.,.,/6, dC22 = - dcx"j6 , dC33 = dc.,.,/3 

dC23 = 2dcxx/3, dC31 = 2dcxx/3, dCl2 = - dcxx/6, 

and equation (5) becomes 

M = ~ [~ -~+~ F +~o- ~J 
7 6 6 3 3 3 

1 
= - [B - A + 8F + 80 - 2H] 

67 

(7) 

(8) 

By trial, the Bishop and Hill stress states that maxi­
mize the right side of equation (8) are Nos. 21 and 25 
in Table 1. For No. 21 , A = -t, B = t, a = 0, F = 
0= t, H = 0; and for No. 25, A = B = 0=0, 

F = G = t, H = -t, all multiplied by VB T. We 

thus have M = 3VB/2 in equation (8). 
It may be noted that for stress state 21, the active 

slip systems are -av a2 , c2' -c3' - dl and d3 (Bishop 
and Hill notation, see Appendix 1), while for stress 
state 25, they are -av a2 , Cv -c3 ' - d2 and d3 • Since 
the deformation borders on both stress states, only 
those slip systems (with proper sign) common to both 
are activated. This means - av a2, -c3 and d3• 

2. Compression plane (110); elongation direction 
[II 2]. 

Let the specimen axes be x - [110] , y - [III] and 

001 

001 

FIG. 2. Standard (110) stereographic projection for a 
cubic crystal. 
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z - [Il2], Fig. 2. The matrix for transformation to alone. It may be shown that under these conditions, 
the cubic axes is 

x y z 

1 1 1 
1 -----

V2 V3 V6 
1 1 1 

2-
V2 V3 V6 

3 1 2 
0- V3 V6 

From equation (6) and the transformation matrix, we 
obtain 

den = de22 = de",,,,/3, de33 = - 2de"",,/3, 

de23 = - de"",,/3, de31 = de"",,/3, de12 = 2de"",,/3. (9) 

Equation (5) becomes 

(10) 

The Bishop and Hill stress states that maximize the 

right side of (10) are Nos. 6 and 27, with M = 4V6/3. 
For stress state 6 (A = B = 0 = F = G = 0. H = 

V6 7). slip systems aI> -a2, bl • -b2, -cI> c2, -dI' d2 
become active. And for state 27 (A = B = 0 = 0, 

F = -V67/2, G = H = V6 7/2), - az• aa' bI> -ba, 
-di and d2 become active. Hence, the actual oper­
ating systems (which are common to both states) are 
-a2, bI> -di and d2• It may be noted that systems 
- dl and dz are in cross-slip relationship with bi 

and -a2, respectively. 
A closer examination of this orientation, however, 

reveals the possibility of slip on systems -a2 and bi 

2 
de",,,, = - V6 dy, 

V3 
de'IJ' = -- dy, 

6 

2 
de'IJ'IJ = 0, de •• = V6 dy, 

6 (11) 

de.", = 0, 

where dy is the incremental shear each on slip systems 
- az andbl . The only difference between equations (11) 
and (6) is in the shear strain term de'IJ' . However, 
since the present setup does not restrict dellz to zero, 
the deformation is expected to occur on -a2 and bl 

alone if the total amount of shear ~ldYi l is less than 
that for the four slip systems case (Taylor's minimum 
shear principle). For slip on - az and bl • we have from 
equation (11), 

~ IdYil = 2 Idyl = V6 de""", (12) 

4 
~ I dYi 1= Mde",,,, = 3 V6 de""" , (13) 

The former value is one-third less and hence we may 
expect slip on - a2 and bi alone. 

Similar calculations were carried out for five other 
orientations of interest. The results for all seven 
orientations are summarized in Table 2, together with 
those for the polycrystalline samples. Interestingly, 
the same operating slip systems as those listed in 
Table 2 were found earlier by a less rigorous method. (8) 

As for the polycrystalline material, a value of M = 
1.44V6 was used. It was derived by Hosford and 
Backofen (3) from the von Mises yield criterion and the 
use of Taylor's factor of 3.06 for relating the tensile 
yield stress to the resolved shear stress for slip in a 
randomly oriented polycrystalline sample. Although 
the derivation was based on tensile testing under plane 
strain conditions, it may be shown that this value is 

TABLE 2. Summary of analysis 

Sample Compression Elongation Slip systems Equation (6) 
no. plane direction M selected satisfied? 

1 112 ITl 3V6/2 -au a 2, -ca, d3 yes 
2 110 Tl2 VB -a" b, no 

4V6/3 -a" b,• -d,• d, yes 
3 110 001 V6 a 1' -a •• b, • -b, yes 
4 110 no 2V6 -au a 2 , - bl , b2, yes 

V6 
C1' -ca. d ,• -do 

5 001 TOO a 2 • b2 • c" d, yes 
6 001 TlO V6 -c,• c" -d1' d. yes 
7 III IT2 3V6/2 -b ,• b,. c •• -d. yes 
8 polycrystal #1 1.44V6 yes 
9 polycrystal #2 1.44V6 yes 

Composition of all samples: 4% Mo- 17 % F e- 79 % Ni by weight. Samples 8 and 9 were slowly cooled and quenched, 
respectively, after annealing at 1000°C; grain diameter ~0.04 mm. 

r 
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0.498"- -1 

I 

I 
I 

2" 

3/8"-24 ALLEN 
HEAD BOLTS 

FIG. 3. Compression device for approximating plane 
strain deformation. 

equally applicable in the present case of plane strain 
compression. 

Table 2 indicates that the M values vary by as much 
as a factor or two. Hence, the theoretical results may 
be readily tested. 

EXPERIMENTAL 

A special compression die, somewhat similar to that 
described by Wever and Schmid, (9) was constructed for 
quantitative testing of the theory. As illustrated in 
Fig. 3, the die consists of a hardened steel plunger 
fitted in the slot of a three-piece assembly, which is 
secured by bolts to facilitate specimen removal after 
the test. The specimen, carefully machined to the slot 
width, is placed between the plunger and the platen. 
The ensemble is then attached to a Baldwin hydraulic 
testing machine for compression testing. 

This test setup has several advantages in controlling 
the deformation process. First, the fixed slot width in­
sures negligible lateral spread of the crystal during com­
pression. Secondly, the present setup permits highly 
accurate orientation alignment even for very small 
crystals. Finally, this method allows a continuous re­
cording of load versus deflection, an important feature 
for quantitative stress comparisons. In the present 
setup, however, there is no constraint on dey. and 
dezz· 

The single crystal specimens with orientations listed 
in Table 2 were machined from large grains which were 
solidified slowly from the melt. Two fine grained 
(dia. ~.04 mm) polycrystalline samples were also 
tested. Orientation of the single crystals was controlled 
to about one degree in the finished crystals. Typical 
dimensions are 0.4 in. long by 0.5 in. wide 0.1 in. thick. 
After machining, the specimens were etched in aq~ta-
1'egia and then electropolished in a solution of Cr03 

and H 3P04 to allow slip line observations as well as to 

reduce friction. Teflon strips 5 mils thick were used 
as lubricant. Breakdown ofthese strips (usually in the 
periphery region in the elongation direction) occurred 
between twenty and forty per cent thickness reduction 
dcpending on the flow characteristics of the sample. 
Loading rate was equivalent to about 0·01 in/min. 

RESULTS AND DISCUSSION 

Figure 4 shows typical curves of true compression 
stress (load divided by instantaneous area) versus true 
strain (log [initial height/instantaneous height]) . The 
break in the curves is due to temporary unloading to 
insert new teflon strips. The lower flow stress upon 
reloading is the result of reduced friction. There is 
little doubt that the stress measurements were com­
plicated by friction, see Appendix II. However, the 
friction ought not to varywidelyfrom crystal to crystal. 
Unloading curves such as those in Fig. 4 indicate that 
the extra friction stress (above that of a freshly lubri­
cated surface) amounts to about 20%, mainly as a 
result of some teflon breakdown. Finally, the stress 
levels reached in the present study are comparable to 
those under tension (where friction is absent) of a 
78 % Ni-22% Fe alloy as studied by Vidoz et al.(lO) 

H 
I/} 
0. 

'" o 

I/} 
I/} 
W 
II: 
>­
I/} 

w 
::J 
II: 
>-

2oo,---------------------------------, 
4Mo-17Fe-79NL 

POL YCRYSTAL 2 

(110) [112] 

°0~----~~~0~.2~------~0~.74--------~O.6 
TRUE STRAIN, l.n (ho/h1) 

Fro. 4. True compression stress-true thickness strain 
curves for three samples. 4-79 Mo·Permalloy. Break in 

curves due to unloading to renew teflon lubricant. 
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50r-----~=-------~-------------------, 
1 - (112)[111] 

.... 
V) 
Q. 

40 

'" 30 
2 

V) 
V) 

w 
a: 
f­
V) 

~ 20 
w 
I 
V) 

2-(110)[112] 
3 - (110) [001] 
4 - (110) [110] 

. 5 - (001) [100] 
6-(001) [T1O] 
7- (111) [112] 
8 - POLYCRYSTAL, 

SLOW COOL 
9 - POLYCRYSTAL, 

QUENCH 

4 Mo -17 Fe -79 NL 

® 

°0~--------~0~. 5~--L-----~1~.0----------~1.5 

SHEAR STRAIN 

FIG. 5. Resolved shear stress- resolved shear strain curves 
of all samples tested. 4-79 Mo-Permalloy. 

Thus, the relative stress levels among samples, for a 
given moderate reduction, are thought to reffect 
mainly the orientation difference as analyzed. 

It may be observed in Fig. 4 that the strength of the 
(llO)[IlO] crystal exceeds that ofthe (llO)[Il2] crystal 
by a factor of about 2. This is in qualitative agreement 

with their difference in M values. For a more quantita­
tive comparison, all curves should be plotted on a 
resolved shear stress (r)-resolved shear strain (y) basis. 
This is shown in Fig. 5 for all samples, with calculations 
based on the formulas r = aIM, y = Me. If the 
Bishop and Hill theory is correct, all curves should fall 
into one. 

The majority of the curves do not in fact fall into a 
band with maximum deviation of ±20 % from the 
average. This scatter is within the range of expecta­
tions when frictional variation and other inherent 
errors are considered. Some remarks, however, may be 
made with several of the samples. First, at large 
strains crystals 4 and 7 seem to harden less than 
the average. Examination of crystal 4, which is a 
(llO)[IlO] orientation, reveals the presence of large 
deformation bands, Fig. 6. This deviation from 
homogeneous deformation is expected to result in 
softening, effectively lowering the M value. (6) On the 
other hand, for this orientation in aluminum, Hosford(7) 
has found only slight asterism in the Laue spots. In 
addition, the r-y curve does not deviate from those of 
the other orientations. Such observations suggest that 
deformation banding may be absent in aluminum of 
the (llO)[IlO] orientation. Accordingly, we deformed 
such a crystal in our apparatus. As Fig. 7 shows, 
deformation banding was indeed absent. Except for 
a few long slip lines which appeared very early in the 
test, only a clothlike mixture of fine slip was found 
distributed uniformly throughout the surface. 

[Tl0] 

l[O~T] 

(T11) 

FIG. 6. Slip traces on top surface of (110) [IlO] Permalloy crystal after 21.7 % thickness reduction, 
showing presence of deformation bands. The [IlO] direction is nearly horizontal. Slip plane traces 

are noted in margin. X 280 
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[Tl0] 

{[O~T] 

(Tl1) 

(111) 

FIG. 7. Top smface of (110) [TlO] aluminum crystal a ft.er 24 % thickness reduction, showing 
absence of d eformation bands . Slip p lane traces are noted in margin. X 280 

With regard to crystal 7, (111)[II2], the lower 
hardening may result from lattice reorientation, again 
lowering the M value. Brick and Williamson(11) have 
found that a (111)[II2) brass crystal rotates to a 
(110)[001] position after an 80 % reduction by rolling. 

It may be noted that],t[ = V6 for (110)[001] , which is 

smaller that the value of M = 3V6j2 for (111)[II2). 
Hence if lattice rotation did not occur in the present 
(111)[II2] sample, use of a smaller value of M would 

have raised its rl' curve in Fig. 5. Using hardness 
measurements, Brick and Williamson(ll) also noted a 
softening in their (111)[TI2] brass crystal. 

Secondly, the two polycrystalline samples, 8 and 9, 
fall within the single crystal group. However, they do 
lie near the top of the list, suggesting a grain size 
strengthening effect not accounted for in the basic 

theory. (If a value of M = 1.35V6 as derived by 
Bishop and HiW4) is used (see Ref. 7) instead of 

[112] 

I [T~l] 

{111) 
(l1l) 

FIG. 8. Top smface of (110)[Tl2] P enn a lloy crystal afte r 50.5 % thickness reduct ion, electropolished , 
and then further deformed light ly. No constraint on e... Slip p lane traces consistent with pre. 

dicted -a2 , (111)[101], and b2 , (111)[011] slips. X 140 

2 
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[112] 

In~TJ 
FIG. 9. Top view of (1l0)[Il2) Permalloy crystal of Fig. 8 after 50.5 % 
thickness reduction. Transformation of the initially rectangular shape t~ (' 

a parallelogram indica.ted presence of 8.. . X 2.70 

M = 1.44V6 for the present study, the r-y curves the presence of the dey. term (equation (11)) associated 
would lie higher still. This would accentuate the with the predicted two-slip system operation. A 
possible grain size strengthening effect even more.) detailed analysis(I2) of the shape change has likewise 
It may be noted that the difference between samples confirmed that the deformation can be accounted for 
8 and 9 in the cooling rate. Sample 8, slowly cooled almost exclusively by the two predicted slip systems 
after a 1000°0 anneal, has a much higher yield stress - a2 and bl • 

probably as a result of ordering. By placing a (110)[II2] crystal between rectangular 
Finally, in the case of (110)[II2] straining (crystal polycrystalline blocks during compression, dey" was 

No. 2), a value of M = V6 was used in Fig. 5. This suppressed. As a result, all four slip systems (-a2, bI> 
corresponds to the two-slip system (- a

2 
and b

I
) opera- -dl and d2) were found to operate in accordance with 

tion and leads to the strain equations (11) , instead of analysis, see Fig. 10. 
activating additional slip systems (-d

l 
and d

2
) to At first glance, the fact that -dI> (lII)[Ol1] and 

conform with equations - (6). The two-slip system d2, (lII)[IOl] can be activated at all seems surprising. 
operation is confirmed by metallographic observation The slip plane normal (1 II) of these two slip systems is 
of slip traces on the specimen surface, Fig. 8. In perpendicular to the compression axis (see Fig. 2) and 
addition, the initially rectangular geometry is changed hence the resolved shear stress is zero on this basis. 
to a parallelogram after straining, Fig. 9, indicating In actuality, however, if the shear strain dev• resulting 

[112J. 

r [l~l] 

(T11) 

(111) 

(11 T) 

FIG. 10. Top surface of (1l0)[Il2) Permalloy crystal after 13 % thickness reduction. Strain 8 •• was sup­
pressed by placing the sample between polycrystalline blocks. Note additional slip traces consistent with 

predicted new systems -dl' (lIl)[Oll) and d 2 , (1I1)[10I). X 140 
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from the operation of -az, (111)[101] andbl , (lIl)[OI1] 
were suppressed, a shear stress T yz is generated to 
activate -dl and dz (in a direction to reduce deyz ). 

CONCLUSIONS 

Depending on crystal orientation, the resistance to 
plane strain deformation can vary by a factor of two 
even in face-centered cubic material. This resistance 
arises mainly from the disposition of the slip systems 
with respect to the deformation geometry. Experi­
ments on Permalloy single crystals confirmed the 
general validity of a Taylor and Bishop and Hill type 
analysis. However, we need to take into account such 
factors as lattice rotations, deformation banding, and 
relaxation of constraints in the deformation system. 
The tendencies for lattice rotations and for deformation 
banding are presumably related in an important way 
to details of dislocation interactions and would, there­
fore, depend on such factors as stacking fault energy, 
testing temperature and strain rates . 
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APPENDIX I 

In the Bishop and Hill notation, the following 
designations are used to represent {111}(1l0) slip in 
f.c.c. metals: 

Plane (Ill) (III) 
Direction oIl 101 IlO 011 101 IlO 
Shear a l a2 aa hI bz ba 
Plane (Ill) (III) 
Direction 011 101 110 011 101 110 
Shear c1 Cz ca dl dz d3 

The shear a1 represents slip on (Ill) plane and in the 
[01 I] direction in the positive sense. The notation -al 

will be used for either (III) [01 I] or (I1I)[OIl] slip, i.e., 
for shear in the negative sense. 

Bishop and Hill have shown that the resolved shear 

stress on the twelve slip systems, multiplied by V6, 
are equal to: 

for aI' A-G+H az, B + F - H 
bv A+G+H bz, B - F - H 
cI ' A+G-H cz, B + F + H 
dl> A -G- H dz, B - F + H 

aa' C-F+G 
ba, C+F-G 
c3, C-F-G (AI) 
da, C+ F + G, 

where 

A = (jzz - (jaa, B = (jaa - (jll' C = (ju - (j22 

F = (jZ3 ' G = (jal' H = (jIZ' 

all referred to the cubic axes. 
Once the appropriate stress state from Table 1 is 

selected according to the maximum work principle, 
the values A to H are fixed. These values are then 
entered into equation (AI) to obtain the desired active 
slip systems. As an example, consider the (1l2)[IlI] 
deformation in the text (case 1). Stress state 21 from 
Table 1 is one of two states selected. For this state, 
A = -t, B = t, C = 0, F = G = t, H = 0, all 

multiplied by VB T. When these values are entered 
into equation (AI), the resolved shear stress for slip is 
reached only in systems -at> az, C2' -ca, - dl> and da. 

Thus for -aI' (- A + G - H)/V6 T = 1, and for bl , 

(A + G + H)/YB T = 0 etc. 

APPENDIX II 

Estimate of friction stress 

A simple friction Hill analysis shows that under plane 
strain compression, the mean compressive stress (j is 
equal to 

(jh 
if = ;L (e/lL /

h 
- 1), (AI) 
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where uy is the yield stress, h is the height, L is the 
length of the sample, and /l- is the coefficient of friction . 
The value of /l- is about 0.04 for teflon. (13) For the 
present samples, the initial dimensions are L R:i 0.4 in., 
h R:i 0.1 in. Hence, /l-L/h R:i 0.16 and ii ~ 1.08uy . The 
friction contribution thus amounts to about 10% only. 
Mter 30% reduction, this contribution is calculated to 
be about 20%. 

If the equation for sliding friction is used , (14) 

(A2) 
'TL 1 

iif = :3 h (1 _ p)5/2 

where iif is the average friction stress, 'T is the yield 
stress in shear for teflon, and p is the fractional thick­
ness reduction. For teflon the tensile yield stress is 
,......,2000 psi. (15) Hence 'T = 1000 psi. Calculations of 
equation (A2) shows that iif is about 3000 to 7000 psi 
in the range of 0 to 30% reduction. These values are 
about 10% ofthe flow stress ofthe Permalloy crystals. 

The friction on the small side surface is complicated 
and depends among other factors on the spreading 
tendency of the crystal. This will contribute further to 
the scatter in the stress-strain curves. 
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